OTAC EQUIPMENT CALCULATION FORMAT

The following format is to be used to determine each projects' operating expenses for OTAC. Please use this format for your projects' calculation and submit to the Director of Engineering Services for review.

Although this is done in an attempt to standardize calculations, not all projects will utilize every part of the calculation format. Accordingly, clearly indicate any deviations from the standard format on your calculation package.

Calculation Guidelines:

- 1. All projects will include (Equipment Depreciation) in their calcultions. Verify with the Director of Engineering Services for the Estimated Life Factor.
- 2. It is understood that Water Chilling Units operating at partial load for overtime use will consume more KW per Ton than at full load. For the sake of this calculation, howeve we will use (design KW per Ton).
- 3. Projects that operate their central plant continuously will show on their calculation package only those cost attributable to the overtime use.
- 4. Concerning labor costs, it is the position of the Property Management Division that engineering labor relative to plant operation will be required in most cases. Using the projected OTAC operating hours multiplied by \$15.00 per hour for your Man-Power calculations.
- 5. If your control system specifics can easily provide "ventilation only" (no heat/no cooling-circulation of air handling unit only), provide a separate calculation. If you cannot provide "V.O.", begin research on how we can accomplish this for later discussion.
- 6. Minimum load for Water Chilling Units over 300 Tons will be 30% of full load. Minimum load for W.C.U.'s 300 Tons and smaller is at your discretion, but is assumed not to be over 30% of full load.
- 7. At times, you may have overtime requests in excess of "minimum load." The calculation considers this and includes "minimum load" and "other load conditions. The formulas are the same, and they are included to clarify and simplify the calculation.
- 8. In most cities, code requires the introduction of fresh air and the removal of toilet exhaust anytime the building is occupied. It is recommended that these be operated and associated costs be the overtime calculation.
- 9. Formulas that include equipment amperage should use actual operating amps in lieu of nameplate amperage.

- 10.Relative to the chilled water/condenser water pump calculation, it is understood that electrical consumption for the chilled water pump will change with the number of A.H.U.'s operating. For this calculation, howeve we will use the operating amperage of both pumps at the minimum load condition ,as the difference would be negligible.
- 11.In regard to cooling tower fan electrical calculation, an assumption of 50% run time of one fan may be used. Feel free to calculate using actual conditions if these conditions can be verified.
- 12. Air compressor run time percentage is assumed to be 33% for all projects. At 100% occupancy verify actual run-time to estimate.
- 13.On equipment depreciation, I recommend using 30 years for estimated equipment life and assume \$785.00/per ton of plant capacity for equipment cost. If you can identify actual equipment cost, please do so.
- 14.Relative to the equipment maintenance calculation, total the project budget amounts for account numbers (#) -Filters, Water treatment, and HVAC Supplies for use in your total maintenance costs.
- 15. When calculating the AHU electrical consumption of Variable Air Volume systems, use actual operating amperage of the AHU at least two hours after start-up.
- 16.It is the intent of the 20% overhead to recover the costs of relative to overtime heating. You may adjust this number to reflect actual costs incurred.

This calculation has been structured to assure fair and equitable billing of overtime HVAC in those instances where numerous tenants request overtime HVAC. On the following work sheets enter your cost values only in the "blue text cells", or unprotected cells where information values are required.

The following data will be required to conduct the OTAC calculations:

- 1. Project Name
- 2. Chiller Unit
- 3. Chiller Tonnage Capacity
- 4. Chiller Design KW per Ton
- 5. Min.Load # AHU's & VAV Boxes
- 6. Average Amperage per AHU
- 7. Building Average Voltage
- 8. Average Cost per KW
- 9. # Condenser Pumps
- 10. Total Condenser GPM Rate
- 11. Cycles of Concentration
- 12. Chill water pump Amperage
- 13. Condenser pump Amperage
- 14. Cooling Tower Amperage

- 15. Cooling Tower Run-time
- 16. O.A. & T.E. Fan Amperage
- 17. Air Compressor Amperage
- 18. Air Compressor Run-time
- 19. Equipment Cost for Plant
- 20. Equipment Estimated Life
- 21. Annual Run-time
- 22. Maintenance Cost;
 - a. Air filters
 - b. Water treatment
 - c. HVAC Supplies
 - d. Misc. Supplies
 - e. Man-power
- 23. Water & Sewage Cost

ii

OVERTIME HVAC OPERATING CALCULATIONS

Project: Project Name					
Chiller Unit:	=	1	Chiller		
Design KW:	=	0.74	KW Per Ton	1	
Minimum Load # AHU's:	=	2	#AHU's	1	
Chiller Tonnage Rating:	=	200	Tonnage	1	
Step One: Electrical Costs:	1				Total Chiller KWh
A. Water Chilling Unit:	l				Per Condition
(1)Condition #1 :		60	Min.Tonnage	1	
Min.Load(# AHU's)= 2				•	
Design KW per Ton x Min.Load					
.00 KW x 30% of Total Tons (KW x 30 x %Tons)= Total KW per hr				#1	44.40 KWb
				π±	44.40
(2) Condition #2:					
AHU's= 3					
KW x(min.load in tons/number AHU's)x				#2	66 60 KWb
				π2	00.00
(3) Condition #3:					
AHU's= 4					
KWx(min.load in tons/number AHU's)x				#2	99 90 KWh
Kw(tolinage% divided by film.And s)x				#3	00.00 KWII
(4) Condition #4:					
AHU's= 5					
KWx(min.load in tons/number AHU's)x				4.0	111.00 1/00/
Kw(tonnage% divided by min.AHU s)x				#4	111.00 KWN
(5) Condition #5:					
AHU's= 6					
KWx(min.load in tons/number AHU's)x					
KW(tonnage% divided by min.AHU's)x				#5	133.20 KWh
(6) Condition #6:					
AHU's= 7					
KWx(min.load in tons/number AHU's)x					·
KW(tonnage% divided by min.AHU's)x				#6	155.40 KWh
(7) Condition #7:					
AHU's= 8					
KWx(min.load in tons/number AHU's)x					· · · · · · · · · · · · · · · · · ·
KW(tonnage% divided by min.AHU's)x				#7	177.60 KWh

Page 1

AHU Fan Motor Amperage:	=	15.00	AMPS	
Average # VAV's Per AHU:	=	6	VAV's	
VAV Box Fan Motor Amperage:	=	0.75	AMPS	
Building Average Voltage:	=	475	Volts	
VAV & AHU AMP Total:	=	19.50	AMPS	
Step One: Electrical Costs B. Air Handling Units:				Total AHU KWh Per Condition
(1)Condition #1 : Min.load(AHU's): #AHU's= 2 #VAV's= 12 #AHU'S x Volts x Amps x 1.732 / 1000			#1	32.09 KWh
(2) Condition #2: AHU's= 3 #VAV's= 18 #AHU'S x Volts x Amps x 1.732 / 1000			#2	48.13 KWh
(3) Condition #3: AHU's= 4 #VAV's= 24 #AHU'S x Volts x Amps x 1.732 / 1000			#3	64.17 KWh
(4) Condition #4: AHU's= 5 #VAV's= 30 #AHU'S x Volts x Amps x 1.732 / 1000			#4	80.21 KWh
(5) Condition #5: AHU's= 6 #VAV's= 36 #AHU'S x Volts x Amps x 1.732 / 1000			#5	96.26 KWh
(6) Condition #6: AHU's= 7 #VAV's= 42 #AHU'S x Volts x Amps x 1.732 / 1000			#6	112.30 KWh
(7) Condition #7: AHU's= 8 #VAV's= 48 #AHU'S x Volts x Amps x 1.732 / 1000			#7	128.34 KWh

Average KW Cost:		=	\$0.065		Cost Per KW	
uilding Average Voltage:		=	475		Average Voltage	
ton Oney Electrical Cast						1A/h
	5					vvn
C. MISC. Equipment					Per Conditi	on
. Pump Systems:			-			
Chill water pumps:	1 =	23.0	AMPS			
Condenser pumps:	1 =	23.0	AMPS			
DW Booster Pumps:	2 =	12.0	AMPS			
Total ChWP+CWP+DWBP:	4 =	58.0	AMPS			
Volt x(total amps)x 1.732/100	0=KWh			С.	47.72	KWh
. Cooling Tower Fans:						
Fan motors:	1 =	39.5	AMPS			
Run Time % Per Hour:	=	50%	FRT			
Volt x(total amps) x 1.732/100	00=KWh			d.	16.25	KWh
				1		
e. O.A. & T.E. Fans - (Single Pha	se):	0.0				
Exhaust Fans:	0=	0.0				
		0.0	AIVIPS			
Iotal U.A.+ I.E.F.:	0 =	0.0	AMPS		0.00	
				е.	0.00	
e. O.A. & T.E. Fans - (Three Pha	se):					
Outside Air Fans:	8 =	18.5	AMPS			
Exhaust Fans:	8 =	9.0	AMPS			
Total O.A.+ T.E.F.:	16 =	27.5	AMPS			
Volt x(total amps)x 1.732/100	0=KWh			e.	22.62	KWh
Air Compressors:	2	11 5				
Pup Time % Der Heur	2 =	11.5				
Null Hille $\%$ Per Hour:		55%	ACKI	f	2 1 2	KMh
VOILS & MILIPS & 1.7 52 & (/0)/10	00			1.	5.12	
g. Hot Water Heaters / Boiler:						
GAS BURNER:	0 =	0.0	MBH			
Hot Water Pump:	0 =	0.0	AMPS			
Volts x Amps x 1.732 x (%)/10	00			g.	0.00	KWh
				l		
SPARE BLOCK						
						1

				TableTec	
Step One: Electrical Costs				Total OTAC	. KWN
G. Total Electrical Costs:				Per Condi	ition
(1) Condition #1:Min Load(AHU/s)-		2			
		2	AIIU		
a. Water Chilling Unit:			a.	44.40	KWh
b. Air Handling Units:			b.	32.09	KWh
c. Chilled/Condenser Pumps:			с.	47.72	KWh
d. Cooling Tower Fans			d.	16.25	KWh
e. Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3.12	KWh
g. Hot Water System:			g.	0.00	KWh
Total KWh Condition #1:				166.20	KWh
(2) Condition #2:Min.Load(AHU's)=		3	AHU		
a. Water Chilling Unit:			a.	66.60	KWh
h Air Handling Units:			b.	48.13	KWh
c Chilled/Condenser Pumps:			с.	47.72	KWh
d Cooling Tower Fans			d.	16.25	KWh
e Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3.12	KWh
g Hot Water System:			g	0.00	KWh
Total KWh Condition #2:			8.	204.44	KWh
			ļ		
(3) Condition #3:Min.Load(AHU's)=		4	AHU		
	_				
a. Water Chilling Unit:			a.	88.80	KWh
b. Air Handling Units:			b.	64.17	KWh
c. Chilled/Condenser Pumps:			С.	47.72	KWh
d. Cooling Tower Fans			d.	16.25	KWh
e. Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3.12	KWh
g. Hot Water System:			g.	0.00	KWh
Total KWh Condition #3:				242.68	KWh
(4) Condition #4.04 in Lond(AUUL)		r I	A		
(4) Condition #4:Min.Load(AHU's)=		5	AHU		
a. Water Chilling Unit:			a.	111.00	KWh
b. Air Handling Units:			b.	80.21	KWh
c. Chilled/Condenser Pumps:			<i>с</i> .	47.72	KWh
d. Cooling Tower Fans			d.	16.25	KWh
e. Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3 12	KWh
g. Hot Water System:			g.	0.00	KWh
Total KWh Condition #4:			- 3.	280.92	KWh
				200.72	

	I				
Step One: Electrical Costs				Total OTAC	. KWh
G. Total Electrical Costs:				Per Cond	ition
(5) Condition #5:Min.Load(AHU's)=		6	AHU		
a Water Chilling Unit				122.20	1/1/h
a. Water Chining Units			d.	155.20	KWh
c. Chilled/Condenser Rumps:			0.	90.20 47.72	KWb
d Cooling Tower Fans			d.	16.25	KWh
e Outside Air/Toilet Exhaust Fans:			<u>а</u>	22.62	KWh
f Air Compressor:			f	3 12	KWh
g Hot Water System:			σ	0.00	KWh
Total KWh Condition #5:	_		δ.	319.17	KWh
				315.17	
(6) Condition #6:Min.Load(AHU's)=		7	AHU		
<u>(-)</u>		-			
a. Water Chilling Unit:			a.	155.40	KWh
b. Air Handling Units:			b.	112.30	KWh
c. Chilled/Condenser Pumps:			С.	47.72	KWh
d. Cooling Tower Fans			d.	16.25	KWh
e. Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3.12	KWh
g. Hot Water System:			g.	0.00	KWh
Total KWh Condition #6:				357.41	KWh
(7) Condition #7:Min.Load(AHU's)=		8	AHU		
a. Water Chilling Unit:			a.	177.60	KWh
b. Air Handling Units:			b.	128.34	KWh
c. Chilled/Condenser Pumps:			С.	47.72	KWh
d. Cooling Tower Fans			d.	16.25	KWh
e. Outside Air/Toilet Exhaust Fans:			e.	22.62	KWh
f. Air Compressor:			f.	3.12	KWh
g. Hot Water System:			g.	0.00	KWh
Total KWh Condition #7:				395.65	KWh
					1
	CDADE				
	SPARE	BLUCK			

Water Make-Up Cost:	= \$2.87	W.M.Cost			
# of Pumps Used:	= 1	Pumps			
Condenser Pump Rate:	= 600	GPM's			
Chiller Tonnage Rating:	= 200	Tons			
Step Two: City Water Consumption	n			Total Cost Po	er Hour
A. Cooling Tower Evaporation Rat	e:			Per Condi	ition
(1) Condition #1:Min.Load(AHU's)=		60	Tons	Total Values	:
Evaporation Rate = 1% of GPM rate:				0.30	%Ton
# of Pumps: 1		1		600.00	PGPM
Total Pump GPM Rate:	600			6.00	1%Rt
Bleed Cycles= (Egpm/C-1)		4	cycl	2.00	CGPM
Total Make-up = Rate + Cycles				8.00	TMup
Hourly Evaporation rate= E rate x 60 mi	n.			480.00	HMup
#1 Load tonnage x Hourly E rate= Make	-Up Rate			144	LMup
lotal Load evaporation make-up:Conditio	on #1			\$0.55	Prnr
2) Condition #2:Min.Load(AHU's)=		90	Tons	Total Values	•
Evaporation Rate = 1% of GPM rate:		50	10113	0.45	%Ton
# of Pumps:				600.00	PGPM
Total Pump GPM Rate:	600	1		6.00	1%Rt
Bleed Cycles= (Egpm/C-1)		4	cvcl	2.00	CGPM
Total Make-up = Rate + Cycles			- / -	8.00	TMup
Hourly Evaporation rate= E rate x 60 mi	n.			480.00	HMup
#1 Load tonnage x Hourly E rate= Make	-Up Rate			216.00	LMup
Fotal Load evaporation make-up:Condition	on #2			\$0.83	Prhr
3) Condition #3:Min.Load(AHU's)=		120	Tons	Total Values	:
Evaporation Rate = 1% of GPM rate:				0.60	%Ton
# of Pumps: 1				600.00	PGPM
Total Pump GPM Rate:	600			6.00	1%Rt
Bleed Cycles= (Egpm/C-1)		4	cycl	2.00	CGPM
Total Make-up = Rate + Cycles				8.00	TMup
Hourly Evaporation rate= E rate x 60 mi	n.			480.00	HMup
#1 Load tonnage x Hourly E rate= Make	-Up Rate			288.00	LMup
Total Load evaporation make-up:Conditic	on #3			\$1.10	Prhr
		450	-	-	
4) Condition #4: Win.Load(AHU's)=		150	Tons	I otal values	: VTon
t of Dumps:				600.00	
Total Rump GRM Pater	600	1		600.00	
Plood Cyclos= (Eggm (C 1)	600	Δ	curd	6.00	1%Kt
Bieeu Cycles= (Egpin/C-1)		4	CYCI	2.00	
Hourly Evaporation rates E rate $x \in \Omega$ mil	n			8.00	
#1 Load toppage y Hourby E rate - Make	II.			480.00	
#1 LOAU LOTTIAge X HOURTY E RALE= Make	-ор касе			360.00	Liviup

Chan Truck City Mater Consumption				Tabal Coat D	
Step Two: City water Consumption				Total Cost P	er Hour
A. Cooling Tower Evaporation Rate:				Per Con	dition
(E) Condition #E:Min Load(AUU's)-		190	Tons	Total Values	•
Evaporation Pate = 1% of GDM rate:		100	TOTIS		%Ton
# of Pumps:				600.00	
Total Rump GPM Rate:	00			6.00	1% D+
Bleed Cycles= (Egnm/C-1)		4	cycl	2.00	CGPM
Total Make-up = Rate + Cycles	L	-	Cyci	8.00	TMun
Hourly Evaporation rate = E rate x 60 min				480.00	HMup
#1 Load tonnage x Hourly E rate= Make-Up Rate	2			432.00	LMup
Total Load evaporation make-up:Condition #5	-			\$1.65	Prhr
			I.	· · ·	
(6) Condition #6:Min.Load(AHU's)=		210	Tons	Total Values	:
Evaporation Rate = 1% of GPM rate:				1.05	%Ton
# of Pumps: 1				600.00	PGPM
Total Pump GPM Rate: 60	00			6.00	1%Rt
Bleed Cycles= (Egpm/C-1)		4	cycl	2.00	CGPM
Total Make-up = Rate + Cycles				8.00	ТМир
Hourly Evaporation rate= E rate x 60 min.				480.00	HMup
#1 Load tonnage x Hourly E rate= Make-Up Rate	į			504.00	LMup
Total Load evaporation make-up:Condition #6				\$1.93	Prhr
(7) Condition #7:Min Load(AUU's)-		240	Tons	Total Values	
Evanoration Rate = 1% of GPM rate:		240	TOTIS		%Ton
# of Pumps:				600.00	
Total Pump GPM Bate:	00			6.00	1%Rt
Bleed Cycles= (Egnm/C-1)		4	cycl	2.00	CGPM
Total Make-up = Rate + Cycles	L		Cyci	8.00	TMup
Hourly Evaporation rate = E rate x 60 min.				480.00	HMup
#1 Load tonnage x Hourly E rate= Make-Up Rate	2			576.00	LMup
Total Load evaporation make-up:Condition #7	-			\$2.20	Prhr
· ·			<u>.</u>	· · · · ·	
Step Two: Water Make-Up Cost				Water Ma	ake-Up
(B)Water & Sewage charges:				Cost Per Un	it Hour
(1) Water Cost Format					
750 gallons = 1 unit charge					
Load Make-up divided by 1 unit(750)x cost					
Unit Cost per 750 gal. = \$00.00 unit					
LMup / 1 unit= Unit x Cost=Cost per/hr.					
Total Water Make-up Unit Cost:				\$2.87	Unhr

Hourly Man Power Cost: = Step Three: Equipment Depreciation Equipment cost= \$785.00 per plant ton or use actual cost. Estimated Life= 30 years for standard operating hours. 25 years for 25% above operating hours. 20 years for 40% above operating hours. 20 years for 40% above operating hours. Annual Run Time= Project standard operating hours plus OT Equipment Cost divided by (Estimated life x Annual run time *.Plant Capacity: 1.Equipment Cost: 2.Estimated Life: 20 3.SOH's+OTAC Hours:	\$15.00 FAC hours. e). ms r Ton ars ours	PrHr 1. 2. 3.	 Tota	Cost Pe	er Hour
Step Three: Equipment Depreciation Equipment cost= \$785.00 per plant ton or use actual cost. Estimated Life= 30 years for standard operating hours. 25 years for 25% above operating hours. 20 years for 40% above operating hours. Annual Run Time= Project standard operating hours plus OT Equipment Cost divided by (Estimated life x Annual run time *.Plant Capacity: 1.Equipment Cost: 2.Estimated Life: 2.O Years 3.SOH's+OTAC Hours:	TAC hours. e). ns r Ton ars ours	1. 2. 3.	Tota	Cost Pe	er Hour
Equipment cost= \$785.00 per plant ton or use actual cost. Estimated Life= 30 years for standard operating hours. 25 years for 25% above operating hours. 20 years for 40% above operating hours. Annual Run Time= Project standard operating hours plus OT Equipment Cost divided by (Estimated life x Annual run time *.Plant Capacity: 1.Equipment Cost: 2.Estimated Life: 3.SOH's+OTAC Hours: 5314	TAC hours. e). ins ir Ton ars ours	1. 2. 3.	\$1,	334,500	
Equipment cost= \$785.00 per plant ton or use actual cost. Estimated Life= 30 years for standard operating hours. 25 years for 25% above operating hours. 20 years for 40% above operating hours. Annual Run Time= Project standard operating hours plus OT Equipment Cost divided by (Estimated life x Annual run time *.Plant Capacity: 1.Equipment Cost: 2.Estimated Life: 3.SOH's+OTAC Hours: 5314	TAC hours. e). ins ir Ton iars burs	1. 2. 3.	\$1,	334,500	
Annual Run Time= Project standard operating hours plus OT Equipment Cost divided by (Estimated life x Annual run time *.Plant Capacity: 1700 Tou 1.Equipment Cost: \$785 Per 2.Estimated Life: 20 Yea 3.SOH's+OTAC Hours: 5314 Ho	FAC hours. e). ns or Ton ars ours	1. 2. 3.	\$1,	334,500	
Equipment Cost divided by (Estimated life x Annual run time*.Plant Capacity:17001.Equipment Cost:\$7852.Estimated Life:203.SOH's+OTAC Hours:5314	e). ins ir Ton iars purs	1. 2. 3.	\$1,	334,500	
*.Plant Capacity:1700Toi1.Equipment Cost:\$785Per2.Estimated Life:20Yea3.SOH's+OTAC Hours:5314Ho	ns r Ton ars ours	1. 2. 3.	\$1,	334,500	
1.Equipment Cost:\$785Per2.Estimated Life:20Yes3.SOH's+OTAC Hours:5314Ho	r Ton ars ours	1. 2. 3.	\$1,	334,500	
2.Estimated Life: 20 Yes 3.SOH's+OTAC Hours: 5314 Ho	ars ours	2. 3.		20	ŞŞŞŞŞ
3.SOH's+OTAC Hours: 5314 Ho	ours	3.		20	Years
				5314	Hours
Cotal Equipment Depreciation Cost				\$12 56	Prhr
Total Equipment Depreciation Cost.				J12.30	
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies	Γ		Total Cos	t Per Vea	
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies	ſ		Total Cos	t Per Yea	<u>:</u>
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Suplies		1.	<u>Total Cos</u>	<u>t Per Year</u> \$12.000	<u>.</u> A.F.
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour:		1.	<u>Total Cos</u>	<u>t Per Yea</u> \$12,000 \$16.000	<u>с</u> А.F. W.T.
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost:		1. 2. 3.	<u>Total Cos</u>	<u>t Per Year</u> \$12,000 \$16,000 \$22.000	A.F. W.T. HVAC
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost: 7. Annual Operating Hours:		1. 2. 3. 4.	<u>Total Cos</u>	<u>t Per Yea</u> \$12,000 \$16,000 \$22,000 \$8,000	A.F. W.T. HVAC MISC
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost: 7. Annual Operating Hours:		1. 2. 3. 4. 5.	<u>Total Cos</u>	t Per Year \$12,000 \$16,000 \$22,000 \$8,000 \$22,776	A.F. W.T. HVAC MISC M.P.
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost: 7. Annual Operating Hours:		1. 2. 3. 4. 5. 6.	<u>Total Cos</u>	t Per Year \$12,000 \$16,000 \$22,000 \$8,000 \$22,776 \$80,776	A.F. W.T. HVAC MISC M.P. TOT.
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost: 7. Annual Operating Hours:		1. 2. 3. 4. 5. 6. 7.	<u>Total Cos</u>	t Per Year \$12,000 \$16,000 \$22,000 \$8,000 \$22,776 \$80,776 \$314	A.F. W.T. HVAC MISC M.P. TOT. AOH
Maintenance Cost: 1. Air Filters 2. Water Treatment & Supplies 3. HVAC Supplies 4. MISC. Supllies 5. Man Power Per Hour: 6. Total Maintenance Cost: 7. Annual Operating Hours:		1. 2. 3. 4. 5. 6. 7.	Total Cos	t Per Year \$12,000 \$16,000 \$22,000 \$8,000 \$22,776 \$80,776 5314	A.F. W.T. HVAC MISC M.P. TOT. AOH

Step Five: Calculation Totals Per Condition			Total Cost P	er Hour
(A) Condition #1:Min.Load(AHU's)=	2	AHU		
1 Electrical Cost:		_	¢10.90	E.C.
1. Electrical Cost.		_	\$10.80	
3 Equipment Depreciation Cost:		_	\$12.56	FDC
4. Equipment Maintenance Cost:		=	\$15.20	EMC
Total Cost Per Hour:Condition #1		=	\$39.00	Prhr
(D) Condition #2.04in Lood(AUUIa)-				
(B) Condition #2:Win.Load(AHU'S)=	3	AHU		
1 Electrical Cost:		_	\$12.20	5.0
2 Water Cost		_	\$15.29	W.C.
3. Equipment Depreciation Cost:		=	\$12.56	EDC
4. Equipment Maintenance Cost:		=	\$15.20	EMC
Total Cost Per Hour: Condition #2		=	\$41.88	Prhr
(C) Condition #3:Min.Load(AHU's)=	4	AHU		-
1. Electrical Cost:		=	\$15.77	E.C.
2. Water Cost:		=	\$1.10	W.C.
3. Equipment Depreciation Cost:		=	\$12.56	EDC
4. Equipment Maintenance Cost.		-	\$15.20	EIVIC
Total Cost Per Hour: Condition #3		=	\$44.63	Prhr
(D) Condition #4:Min.Load(AHU's)=	5	AHU		
1. Electrical Cost:		=	\$18.26	E.C.
2. Water Cost: 3. Equipment Depreciation Cost:		=	\$1.38	FDC
4 Equipment Maintenance Cost		=	\$15.20	EMC
		-	\$15.20	LIVIC
Total Cost Per Hour: Condition #4		=	\$47.40	Prhr
(E) Condition #5:Min Load(AHU's)-				
(E) Condition #5.10111.Load(AHO S)-	0	АПО		
1 Electrical Cost:		=	\$20.75	F.C.
2. Water Cost:		=	\$1.65	w.c.
3. Equipment Depreciation Cost:		=	\$12.56	EDC
4. Equipment Maintenance Cost:		=	\$15.20	ЕМС
Total Cast Day Houry Condition #E		_	\$50.16	Drhr

Step Five: Calculation Totals Per Condition			Total Cost P	er Hour
(F) Condition #6:Min.Load(AHU's)=	7	AHU		-
1. Electrical Cost:		=	\$23.23	E.C.
2. Water Cost:		=	\$1.93	W.C.
3. Equipment Depreciation Cost:		_	\$12.50	
4. Equipment Maintenance Cost.		-	\$15.20	
Total Cost Per Hour:Condition #6		=	\$52.92	Prhr
(G) Condition #7:Min.Load(AHU's)=	8	АНЦ		
	, v	7410		<u> </u>
1. Electrical Cost:		=	\$25.72	E.C.
2. Water Cost:		=	\$2.20	w.c.
3. Equipment Depreciation Cost:		=	\$12.56	EDC
4. Equipment Maintenance Cost:		=	\$15.20	EMC
Total Cost Per Hour: Condition #7		=	\$55.68	KWh
SPARE BL	.OCK			
SPARE BL	.ОСК			
SPARE BL	.оск			

Management Overhead Cost:	=	20%	
Step Seven: Total Operating Cost P	Per Condition		Cost Per Hour
Step Seven. Total Operating Cost P	er condition		COST FEI HOUI
#1 Condition: Operating Cost:			\$39.00 PrHr
Management Overhead=	<u>20%</u>		\$7.80
Total Operating Cost: Condition #1			\$46.80 PrHr
#2 Condition: Operating Cost:			\$41.88 PrHr
Management Overhead=	20%		\$8.38
Total Operating Cost: Condition #2	<u>=070</u>		\$50.26 PrHr
#3 Condition: Operating Cost:			\$44.63 PrHr
Management Overhead=	20%		\$8.93
Total Operating Cost: Condition #3	<u></u>		\$53.56 PrHr
			· · · · ·
#4 Condition: Operating Cost:			\$47.40 PrHr
Management Overhead=	20%		\$9.48
Total Operating Cost: Condition #4	2070		\$56.88 PrHr

#5 Condition: Operating Cost:			\$50.16 PrHr
Management Overhead=	20%		\$10.03
Total Operating Cost: Condition #5			\$60.19 PrHr
<u> </u>		P	
#6 Condition: Operating Cost:			\$52.92 PrHr
Management Overhead=	<u>20%</u>		\$10.58
Total Operating Cost: Condition #6			\$63.50 PrHr
#7 Condition: Operating Cost:			\$55.68 PrHr
Management Overhead=	<u>20%</u>		<u>\$11.14</u>
Total Operating Cost: Condition #7			\$66.82 PrHr
	SPARE BLOCK		
L			
	SPARE BLOCK		
L			

Page 11

Company Nam	e Here
Project Name OTAC OPERATING CO CALCULATIONS	ST
Full Floor Operating Cost Per Hour	<u>Cost Per Hour</u>
1. Electrical Cost	\$13.29
2. Water Cost	\$0.83
3. Depreciation Cost	\$12.56
4. Maintenance Cost	\$15.20
Subtotal Hourly Cost	\$41.88
Overhead 20%	\$8.38
	¢50.00